Ecosyste.ms: Advisories

An open API service providing security vulnerability metadata for many open source software ecosystems.

Security Advisories: GSA_kwCzR0hTQS02MjdxLWcyOTMtNDlxN80ovQ

Abort caused by allocating a vector that is too large in Tensorflow

Impact

During shape inference, TensorFlow can allocate a large vector based on a value from a tensor controlled by the user:

  const auto num_dims = Value(shape_dim);
  std::vector<DimensionHandle> dims;
  dims.reserve(num_dims);

Patches

We have patched the issue in GitHub commit 1361fb7e29449629e1df94d44e0427ebec8c83c7.

The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Permalink: https://github.com/advisories/GHSA-627q-g293-49q7
JSON: https://advisories.ecosyste.ms/api/v1/advisories/GSA_kwCzR0hTQS02MjdxLWcyOTMtNDlxN80ovQ
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Moderate
Classification: General
Published: over 2 years ago
Updated: 11 months ago


CVSS Score: 6.5
CVSS vector: CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Identifiers: GHSA-627q-g293-49q7, CVE-2022-23580
References: Repository: https://github.com/tensorflow/tensorflow
Blast Radius: 31.6

Affected Packages

pypi:tensorflow-gpu
Dependent packages: 155
Dependent repositories: 11,499
Downloads: 297,977 last month
Affected Version Ranges: = 2.7.0, >= 2.6.0, < 2.6.3, < 2.5.3
Fixed in: 2.7.1, 2.6.3, 2.5.3
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.6.0, 2.6.1, 2.6.2, 2.7.0
All unaffected versions: 2.5.3, 2.6.3, 2.6.4, 2.6.5, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88
Dependent repositories: 2,483
Downloads: 1,124,768 last month
Affected Version Ranges: = 2.7.0, >= 2.6.0, < 2.6.3, < 2.5.3
Fixed in: 2.7.1, 2.6.3, 2.5.3
All affected versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.6.0, 2.6.1, 2.6.2, 2.7.0
All unaffected versions: 2.5.3, 2.6.3, 2.6.4, 2.6.5, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1
pypi:tensorflow
Dependent packages: 2,172
Dependent repositories: 73,755
Downloads: 22,714,121 last month
Affected Version Ranges: = 2.7.0, >= 2.6.0, < 2.6.3, < 2.5.3
Fixed in: 2.7.1, 2.6.3, 2.5.3
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.6.0, 2.6.1, 2.6.2, 2.7.0
All unaffected versions: 2.5.3, 2.6.3, 2.6.4, 2.6.5, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1