Ecosyste.ms: Advisories

An open API service providing security vulnerability metadata for many open source software ecosystems.

Security Advisories: GSA_kwCzR0hTQS14ZzczLTk0ZnAtZzQ0Oc4AAyUH

mlflow is vulnerable to remote file access in `mlflow server` and `mlflow ui` CLIs

Impact

Users of the MLflow Open Source Project who are hosting the MLflow Model Registry using the mlflow server or mlflow ui commands using an MLflow version older than MLflow 2.2.1 may be vulnerable to a remote file access exploit if they are not limiting who can query their server (for example, by using a cloud VPC, an IP allowlist for inbound requests, or authentication / authorization middleware).

This issue only affects users and integrations that run the mlflow server and mlflow ui commands. Integrations that do not make use of mlflow server or mlflow ui are unaffected; for example, the Databricks Managed MLflow product and MLflow on Azure Machine Learning do not make use of these commands and are not impacted by these vulnerabilities in any way.

The vulnerability detailed in https://nvd.nist.gov/vuln/detail/CVE-2023-1177 enables an actor to download arbitrary files unrelated to MLflow from the host server, including any files stored in remote locations to which the host server has access.

Patches

This vulnerability has been patched in MLflow 2.2.1, which was released to PyPI on March 2nd, 2023. If you are using mlflow server or mlflow ui with the MLflow Model Registry, we recommend upgrading to MLflow 2.2.1 as soon as possible.

Workarounds

If you are using the MLflow open source mlflow server or mlflow ui commands, we strongly recommend limiting who can access your MLflow Model Registry and MLflow Tracking servers using a cloud VPC, an IP allowlist for inbound requests, authentication / authorization middleware, or another access restriction mechanism of your choosing.

If you are using the MLflow open source mlflow server or mlflow ui commands, we also strongly recommend limiting the remote files to which your MLflow Model Registry and MLflow Tracking servers have access. For example, if your MLflow Model Registry or MLflow Tracking server uses cloud-hosted blob storage for MLflow artifacts, make sure to restrict the scope of your server's cloud credentials such that it can only access files and directories related to MLflow.

References

More information about the vulnerability is available at https://nvd.nist.gov/vuln/detail/CVE-2023-1177.

Permalink: https://github.com/advisories/GHSA-xg73-94fp-g449
JSON: https://advisories.ecosyste.ms/api/v1/advisories/GSA_kwCzR0hTQS14ZzczLTk0ZnAtZzQ0Oc4AAyUH
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Critical
Classification: General
Published: over 1 year ago
Updated: about 2 months ago


CVSS Score: 9.8
CVSS vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Identifiers: GHSA-xg73-94fp-g449, CVE-2023-1177
References: Repository: https://github.com/mlflow/mlflow
Blast Radius: 36.3

Affected Packages

pypi:mlflow
Dependent packages: 360
Dependent repositories: 5,089
Downloads: 18,462,666 last month
Affected Version Ranges: <= 2.2.0
Fixed in: 2.2.1
All affected versions: 0.0.1, 0.1.0, 0.2.0, 0.2.1, 0.3.0, 0.4.0, 0.4.1, 0.4.2, 0.5.0, 0.5.1, 0.5.2, 0.6.0, 0.7.0, 0.8.0, 0.8.1, 0.8.2, 0.9.0, 0.9.1, 1.0.0, 1.1.0, 1.2.0, 1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0, 1.7.1, 1.7.2, 1.8.0, 1.9.0, 1.9.1, 1.10.0, 1.11.0, 1.12.0, 1.12.1, 1.13.1, 1.14.0, 1.14.1, 1.15.0, 1.16.0, 1.17.0, 1.18.0, 1.19.0, 1.20.0, 1.20.1, 1.20.2, 1.21.0, 1.22.0, 1.23.0, 1.23.1, 1.24.0, 1.25.0, 1.25.1, 1.26.0, 1.26.1, 1.27.0, 1.28.0, 1.29.0, 1.30.0, 1.30.1, 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.2.0
All unaffected versions: 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1, 2.4.2, 2.5.0, 2.6.0, 2.7.0, 2.7.1, 2.8.0, 2.8.1, 2.9.0, 2.9.1, 2.9.2, 2.10.0, 2.10.1, 2.10.2, 2.11.0, 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12.0, 2.12.1, 2.12.2, 2.13.0, 2.13.1, 2.13.2, 2.14.0, 2.14.1, 2.14.2, 2.14.3, 2.15.0, 2.15.1, 2.16.0, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.17.2, 2.18.0