An open API service providing security vulnerability metadata for many open source software ecosystems.

GSA_kwCzR0hTQS1wcmNnLXdwNXEtcnY3cM0XFg

Moderate CVSS: 6.8 EPSS: 0.00022% (0.04216 Percentile) EPSS:

Crashes due to overflow and `CHECK`-fail in ops with large tensor shapes

Affected Packages Affected Versions Fixed Versions
pypi:tensorflow-gpu
PURL: pkg:pypi/tensorflow-gpu
< 2.4.4, >= 2.5.0, < 2.5.2, >= 2.6.0, < 2.6.1 2.4.4, 2.5.2, 2.6.1
155 Dependent packages
11,499 Dependent repositories
78,758 Downloads last month

Affected Version Ranges

All affected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.5.0, 2.5.1, 2.6.0

All unaffected versions

2.4.4, 2.5.2, 2.5.3, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0

pypi:tensorflow-cpu
PURL: pkg:pypi/tensorflow-cpu
< 2.4.4, >= 2.5.0, < 2.5.2, >= 2.6.0, < 2.6.1 2.4.4, 2.5.2, 2.6.1
88 Dependent packages
2,483 Dependent repositories
909,001 Downloads last month

Affected Version Ranges

All affected versions

1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.5.0, 2.5.1, 2.6.0

All unaffected versions

2.4.4, 2.5.2, 2.5.3, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0, 2.19.1, 2.20.0

pypi:tensorflow
PURL: pkg:pypi/tensorflow
< 2.4.4, >= 2.5.0, < 2.5.2, >= 2.6.0, < 2.6.1 2.4.4, 2.5.2, 2.6.1
2,172 Dependent packages
73,755 Dependent repositories
21,825,433 Downloads last month

Affected Version Ranges

All affected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.5.0, 2.5.1, 2.6.0

All unaffected versions

2.4.4, 2.5.2, 2.5.3, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0, 2.19.1

Impact

TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an int64_t. If an overflow occurs, MultiplyWithoutOverflow would return a negative result. In the majority of TensorFlow codebase this then results in a CHECK-failure. Newer constructs exist which return a Status instead of crashing the binary.

For example AddDim calls should be replaced by AddDimWithStatus.

This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs).

Patches

We have patched the issue in GitHub commits 7c1692bd417eb4f9b33ead749a41166d6080af85 (merging #51732), d81b1351da3e8c884ff836b64458d94e4a157c15 (merging #51717), a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edf (merging #51658), and d81b1351da3e8c884ff836b64458d94e4a157c15 (merging #51973). It is possible that other similar instances exist in TensorFlow, we will issue fixes as these are discovered.

The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported externally via GitHub issue, GitHub issue and GitHub issue.

References: