An open API service providing security vulnerability metadata for many open source software ecosystems.

MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLTZnODUtM2htOC04M2Y5

Low CVSS: 2.0 EPSS: 0.00067% (0.21169 Percentile) EPSS:

CHECK-fail in `QuantizeAndDequantizeV4Grad`

Affected Packages Affected Versions Fixed Versions
pypi:tensorflow-gpu
PURL: pkg:pypi/tensorflow-gpu
>= 2.4.0, < 2.4.2 2.4.2
155 Dependent packages
11,499 Dependent repositories
93,050 Downloads last month

Affected Version Ranges

All affected versions

2.4.0, 2.4.1

All unaffected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0

pypi:tensorflow-cpu
PURL: pkg:pypi/tensorflow-cpu
>= 2.4.0, < 2.4.2 2.4.2
88 Dependent packages
2,483 Dependent repositories
1,185,283 Downloads last month

Affected Version Ranges

All affected versions

2.4.0, 2.4.1

All unaffected versions

1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0, 2.19.1, 2.20.0

pypi:tensorflow
PURL: pkg:pypi/tensorflow
>= 2.4.0, < 2.4.2 2.4.2
2,172 Dependent packages
73,755 Dependent repositories
21,825,433 Downloads last month

Affected Version Ranges

All affected versions

2.4.0, 2.4.1

All unaffected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0, 2.19.1

Impact

An attacker can trigger a denial of service via a CHECK-fail in tf.raw_ops.QuantizeAndDequantizeV4Grad:

import tensorflow as tf

gradient_tensor = tf.constant([0.0], shape=[1])
input_tensor = tf.constant([0.0], shape=[1])
input_min = tf.constant([[0.0]], shape=[1, 1])
input_max = tf.constant([[0.0]], shape=[1, 1])

tf.raw_ops.QuantizeAndDequantizeV4Grad(
  gradients=gradient_tensor, input=input_tensor,
  input_min=input_min, input_max=input_max, axis=0)

This is because the implementation does not validate the rank of the input_* tensors. In turn, this results in the tensors being passes as they are to QuantizeAndDequantizePerChannelGradientImpl:

template <typename Device, typename T>
struct QuantizeAndDequantizePerChannelGradientImpl {
  static void Compute(const Device& d,
                      typename TTypes<T, 3>::ConstTensor gradient,
                      typename TTypes<T, 3>::ConstTensor input,
                      const Tensor* input_min_tensor,
                      const Tensor* input_max_tensor,
                      typename TTypes<T, 3>::Tensor input_backprop,
                      typename TTypes<T>::Flat input_min_backprop,
                      typename TTypes<T>::Flat input_max_backprop) {
    ...
    auto input_min = input_min_tensor->vec<T>();
    auto input_max = input_max_tensor->vec<T>();
    ...
}

However, the vec<T> method, requires the rank to 1 and triggers a CHECK failure otherwise.

Patches

We have patched the issue in GitHub commit 20431e9044cf2ad3c0323c34888b192f3289af6b.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 as this is the only other affected version.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

References: