Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLThoNDYtNW05aC03NTUz
Heap out of bounds write in `RaggedBinCount`
Impact
If the splits
argument of RaggedBincount
does not specify a valid SparseTensor
, then an attacker can trigger a heap buffer overflow:
import tensorflow as tf
tf.raw_ops.RaggedBincount(splits=[7,8], values= [5, 16, 51, 76, 29, 27, 54, 95],\
size= 59, weights= [0, 0, 0, 0, 0, 0, 0, 0],\
binary_output=False)
This will cause a read from outside the bounds of the splits
tensor buffer in the implementation of the RaggedBincount
op:
for (int idx = 0; idx < num_values; ++idx) {
while (idx >= splits(batch_idx)) {
batch_idx++;
}
...
if (bin < size) {
if (binary_output_) {
out(batch_idx - 1, bin) = T(1);
} else {
T value = (weights_size > 0) ? weights(idx) : T(1);
out(batch_idx - 1, bin) += value;
}
}
}
Before the for
loop, batch_idx
is set to 0. The attacker sets splits(0)
to be 7, hence the while
loop does not execute and batch_idx
remains 0. This then results in writing to out(-1, bin)
, which is before the heap allocated buffer for the output tensor.
Patches
We have patched the issue in GitHub commit eebb96c2830d48597d055d247c0e9aebaea94cd5.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
Permalink: https://github.com/advisories/GHSA-8h46-5m9h-7553JSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLThoNDYtNW05aC03NTUz
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Low
Classification: General
Published: over 3 years ago
Updated: 24 days ago
CVSS Score: 2.5
CVSS vector: CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L
Identifiers: GHSA-8h46-5m9h-7553, CVE-2021-29514
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8h46-5m9h-7553
- https://nvd.nist.gov/vuln/detail/CVE-2021-29514
- https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-442.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-640.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-151.yaml
- https://github.com/advisories/GHSA-8h46-5m9h-7553
Blast Radius: 12.2
Affected Packages
pypi:tensorflow-gpu
Dependent packages: 155Dependent repositories: 11,499
Downloads: 558,843 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3
Fixed in: 2.4.2, 2.3.3
All affected versions: 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88Dependent repositories: 2,483
Downloads: 959,202 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3
Fixed in: 2.4.2, 2.3.3
All affected versions: 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 18,843,694 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3
Fixed in: 2.4.2, 2.3.3
All affected versions: 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0