Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLWhodmMtZzVodi00OGM2
Write to immutable memory region in TensorFlow
Impact
The tf.raw_ops.ImmutableConst
operation returns a constant tensor created from a memory mapped file which is assumed immutable. However, if the type of the tensor is not an integral type, the operation crashes the Python interpreter as it tries to write to the memory area:
>>> import tensorflow as tf
>>> with open('/tmp/test.txt','w') as f: f.write('a'*128)
>>> tf.raw_ops.ImmutableConst(dtype=tf.string,shape=2,
memory_region_name='/tmp/test.txt')
If the file is too small, TensorFlow properly returns an error as the memory area has fewer bytes than what is needed for the tensor it creates. However, as soon as there are enough bytes, the above snippet causes a segmentation fault.
This is because the alocator used to return the buffer data is not marked as returning an opaque handle since the needed virtual method is not overriden.
Patches
We have patched the issue in GitHub commit c1e1fc899ad5f8c725dcbb6470069890b5060bc7 and will release TensorFlow 2.4.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
Since this issue also impacts TF versions before 2.4, we will patch all releases between 1.15 and 2.3 inclusive.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
Permalink: https://github.com/advisories/GHSA-hhvc-g5hv-48c6JSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLWhodmMtZzVodi00OGM2
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Moderate
Classification: General
Published: almost 4 years ago
Updated: 24 days ago
CVSS Score: 4.4
CVSS vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L
Identifiers: GHSA-hhvc-g5hv-48c6, CVE-2020-26268
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hhvc-g5hv-48c6
- https://github.com/tensorflow/tensorflow/commit/c1e1fc899ad5f8c725dcbb6470069890b5060bc7
- https://nvd.nist.gov/vuln/detail/CVE-2020-26268
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-299.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-334.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-255.yaml
- https://github.com/advisories/GHSA-hhvc-g5hv-48c6
Blast Radius: 21.4
Affected Packages
pypi:tensorflow-gpu
Dependent packages: 155Dependent repositories: 11,499
Downloads: 547,144 last month
Affected Version Ranges: >= 2.3.0, < 2.3.2, >= 2.2.0, < 2.2.2, >= 2.1.0, < 2.1.3, >= 2.0.0, < 2.0.4, < 1.15.5
Fixed in: 2.3.2, 2.2.2, 2.1.3, 2.0.4, 1.15.5
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.3.0, 2.3.1
All unaffected versions: 1.15.5, 2.0.4, 2.1.3, 2.1.4, 2.2.2, 2.2.3, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88Dependent repositories: 2,483
Downloads: 959,202 last month
Affected Version Ranges: >= 2.3.0, < 2.3.2, >= 2.2.0, < 2.2.2, >= 2.1.0, < 2.1.3, >= 2.0.0, < 2.0.4, < 1.15.5
Fixed in: 2.3.2, 2.2.2, 2.1.3, 2.0.4, 1.15.5
All affected versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.3.0, 2.3.1
All unaffected versions: 2.1.3, 2.1.4, 2.2.2, 2.2.3, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 18,843,694 last month
Affected Version Ranges: >= 2.3.0, < 2.3.2, >= 2.2.0, < 2.2.2, >= 2.1.0, < 2.1.3, >= 2.0.0, < 2.0.4, < 1.15.5
Fixed in: 2.3.2, 2.2.2, 2.1.3, 2.0.4, 1.15.5
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.3.0, 2.3.1
All unaffected versions: 1.15.5, 2.0.4, 2.1.3, 2.1.4, 2.2.2, 2.2.3, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0