An open API service providing security vulnerability metadata for many open source software ecosystems.

MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLWhyODQtZnF2cC00OG1t

Low CVSS: 2.3 EPSS: 0.00015% (0.018 Percentile) EPSS:

Segfault in SparseCountSparseOutput

Affected Packages Affected Versions Fixed Versions
pypi:tensorflow-gpu >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3 2.4.2, 2.3.3
155 Dependent packages
11,499 Dependent repositories
249,188 Downloads last month

Affected Version Ranges

All affected versions

2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1

All unaffected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0

pypi:tensorflow-cpu >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3 2.4.2, 2.3.3
88 Dependent packages
2,483 Dependent repositories
832,868 Downloads last month

Affected Version Ranges

All affected versions

2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1

All unaffected versions

1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0

pypi:tensorflow >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3 2.4.2, 2.3.3
2,172 Dependent packages
73,755 Dependent repositories
21,825,433 Downloads last month

Affected Version Ranges

All affected versions

2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1

All unaffected versions

0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0, 2.18.1, 2.19.0

Impact

Specifying a negative dense shape in tf.raw_ops.SparseCountSparseOutput results in a segmentation fault being thrown out from the standard library as std::vector invariants are broken.

import tensorflow as tf

indices = tf.constant([], shape=[0, 0], dtype=tf.int64)
values = tf.constant([], shape=[0, 0], dtype=tf.int64)
dense_shape = tf.constant([-100, -100, -100], shape=[3], dtype=tf.int64)
weights = tf.constant([], shape=[0, 0], dtype=tf.int64)

tf.raw_ops.SparseCountSparseOutput(indices=indices, values=values, dense_shape=dense_shape, weights=weights, minlength=79, maxlength=96, binary_output=False)

This is because the implementation assumes the first element of the dense shape is always positive and uses it to initialize a BatchedMap<T> (i.e., std::vector<absl::flat_hash_map<int64,T>>) data structure.

  bool is_1d = shape.NumElements() == 1;
  int num_batches = is_1d ? 1 : shape.flat<int64>()(0);
  ...
  auto per_batch_counts = BatchedMap<W>(num_batches); 

If the shape tensor has more than one element, num_batches is the first value in shape.

Ensuring that the dense_shape argument is a valid tensor shape (that is, all elements are non-negative) solves this issue.

Patches

We have patched the issue in GitHub commit c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

References: