Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLWpocTktd205bS1jZjg5
CHECK-failure in `UnsortedSegmentJoin`
Impact
An attacker can cause a denial of service by controlling the values of num_segments
tensor argument for UnsortedSegmentJoin
:
import tensorflow as tf
inputs = tf.constant([], dtype=tf.string)
segment_ids = tf.constant([], dtype=tf.int32)
num_segments = tf.constant([], dtype=tf.int32)
separator = ''
tf.raw_ops.UnsortedSegmentJoin(
inputs=inputs, segment_ids=segment_ids,
num_segments=num_segments, separator=separator)
This is because the implementation assumes that the num_segments
tensor is a valid scalar:
const Tensor& num_segments_tensor = context->input(2);
auto num_segments = num_segments_tensor.scalar<NUM_SEGMENTS_TYPE>()();
Since the tensor is empty the CHECK
involved in .scalar<T>()()
that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination.
Patches
We have patched the issue in GitHub commit 704866eabe03a9aeda044ec91a8d0c83fc1ebdbe.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.
Permalink: https://github.com/advisories/GHSA-jhq9-wm9m-cf89JSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLWpocTktd205bS1jZjg5
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Low
Classification: General
Published: over 3 years ago
Updated: 21 days ago
CVSS Score: 2.5
CVSS vector: CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L
Identifiers: GHSA-jhq9-wm9m-cf89, CVE-2021-29552
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jhq9-wm9m-cf89
- https://nvd.nist.gov/vuln/detail/CVE-2021-29552
- https://github.com/tensorflow/tensorflow/commit/704866eabe03a9aeda044ec91a8d0c83fc1ebdbe
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-480.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-678.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-189.yaml
- https://github.com/advisories/GHSA-jhq9-wm9m-cf89
Blast Radius: 12.2
Affected Packages
pypi:tensorflow-gpu
Dependent packages: 155Dependent repositories: 11,499
Downloads: 547,144 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4
Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 2.1.4, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88Dependent repositories: 2,483
Downloads: 959,202 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4
Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
All affected versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 2.1.4, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 18,843,694 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4
Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 2.1.4, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0