Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXAyY3EtY3ByZy1mcnZt
Out of bounds write in tensorflow-lite
Impact
In TensorFlow Lite models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor:
https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/segment_sum.cc#L39-L44
This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array:
https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/internal/reference/reference_ops.h#L2625-L2631
This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits.
Patches
We have patched the issue in 204945b and will release patch releases for all affected versions.
We recommend users to upgrade to TensorFlow 2.2.1, or 2.3.1.
Workarounds
A potential workaround would be to add a custom Verifier
to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model.
A similar validation could be done if the segment ids are generated at runtime between inference steps.
If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
Permalink: https://github.com/advisories/GHSA-p2cq-cprg-frvmJSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXAyY3EtY3ByZy1mcnZt
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Critical
Classification: General
Published: about 4 years ago
Updated: about 1 month ago
CVSS Score: 8.1
CVSS vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H
EPSS Percentage: 0.0026
EPSS Percentile: 0.66209
Identifiers: GHSA-p2cq-cprg-frvm, CVE-2020-15214
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2cq-cprg-frvm
- https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a
- https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1
- https://nvd.nist.gov/vuln/detail/CVE-2020-15214
- https://github.com/tensorflow/tensorflow/commit/00c7ed7ce81c2126ebc17dfe7073b5c0efd5ec0a
- https://github.com/tensorflow/tensorflow/commit/a4030d8ba3692c438997c27be2dd95f3d5f54827
- https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/internal/reference/reference_ops.h#L2625-L2631
- https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/segment_sum.cc#L39-L44
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-294.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-329.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-137.yaml
- https://github.com/advisories/GHSA-p2cq-cprg-frvm
Blast Radius: 39.4
Affected Packages
pypi:tensorflow-gpu
Dependent packages: 155Dependent repositories: 11,499
Downloads: 600,517 last month
Affected Version Ranges: = 2.3.0, = 2.2.0
Fixed in: 2.3.1, 2.2.1
All affected versions: 2.2.0, 2.3.0
All unaffected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88Dependent repositories: 2,483
Downloads: 920,637 last month
Affected Version Ranges: = 2.3.0, = 2.2.0
Fixed in: 2.3.1, 2.2.1
All affected versions: 2.2.0, 2.3.0
All unaffected versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 18,843,694 last month
Affected Version Ranges: = 2.3.0, = 2.2.0
Fixed in: 2.3.1, 2.2.1
All affected versions: 2.2.0, 2.3.0
All unaffected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0