Ecosyste.ms: Advisories
An open API service providing security vulnerability metadata for many open source software ecosystems.
Security Advisories: MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXg5ajcteDk4ci1yNHcy
Segmentation fault in tensorflow-lite
Impact
If a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption.
Patches
We have patched the issue in d58c96946b and will release patch releases for all versions between 1.15 and 2.3.
We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Workarounds
A potential workaround would be to add a custom Verifier
to the model loading code to ensure that no operator reuses tensors as both inputs and outputs. Care should be taken to check all types of inputs (i.e., constant or variable tensors as well as optional tensors).
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been discovered from a variant analysis of GHSA-cvpc-8phh-8f45.
Permalink: https://github.com/advisories/GHSA-x9j7-x98r-r4w2JSON: https://advisories.ecosyste.ms/api/v1/advisories/MDE2OlNlY3VyaXR5QWR2aXNvcnlHSFNBLXg5ajcteDk4ci1yNHcy
Source: GitHub Advisory Database
Origin: Unspecified
Severity: High
Classification: General
Published: about 4 years ago
Updated: 24 days ago
CVSS Score: 6.5
CVSS vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:H
Identifiers: GHSA-x9j7-x98r-r4w2, CVE-2020-15210
References:
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x9j7-x98r-r4w2
- https://github.com/tensorflow/tensorflow/commit/d58c96946b2880991d63d1dacacb32f0a4dfa453
- https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1
- https://nvd.nist.gov/vuln/detail/CVE-2020-15210
- http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html
- https://github.com/tensorflow/tensorflow/commit/094329d0dcb8290bed2b1ee420934971f422c86d
- https://github.com/tensorflow/tensorflow/commit/1c8709b437fec10875b0cf271889afec9bbf582e
- https://github.com/tensorflow/tensorflow/commit/8c2092e9f9ef78b3f9060f8bf5ce7a49d1ccdc8f
- https://github.com/tensorflow/tensorflow/commit/f4159ccef23d11eb58ee4263beaaeac1be3343c7
- https://github.com/tensorflow/tensorflow/commit/f50a14b00560a383865c2273e4a9094add3888d5
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-290.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-325.yaml
- https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-133.yaml
- https://github.com/advisories/GHSA-x9j7-x98r-r4w2
Blast Radius: 31.6
Affected Packages
pypi:tensorflow-gpu
Dependent packages: 155Dependent repositories: 11,499
Downloads: 547,144 last month
Affected Version Ranges: = 2.3.0, = 2.2.0, >= 2.1.0, < 2.1.2, >= 2.0.0, < 2.0.3, < 1.15.4
Fixed in: 2.3.1, 2.2.1, 2.1.2, 2.0.3, 1.15.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 2.0.0, 2.0.1, 2.0.2, 2.1.0, 2.1.1, 2.2.0, 2.3.0
All unaffected versions: 1.15.4, 1.15.5, 2.0.3, 2.0.4, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.12.0
pypi:tensorflow-cpu
Dependent packages: 88Dependent repositories: 2,483
Downloads: 959,202 last month
Affected Version Ranges: = 2.3.0, = 2.2.0, >= 2.1.0, < 2.1.2, >= 2.0.0, < 2.0.3, < 1.15.4
Fixed in: 2.3.1, 2.2.1, 2.1.2, 2.0.3, 1.15.4
All affected versions: 1.15.0, 2.1.0, 2.1.1, 2.2.0, 2.3.0
All unaffected versions: 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0
pypi:tensorflow
Dependent packages: 2,172Dependent repositories: 73,755
Downloads: 18,843,694 last month
Affected Version Ranges: = 2.3.0, = 2.2.0, >= 2.1.0, < 2.1.2, >= 2.0.0, < 2.0.3, < 1.15.4
Fixed in: 2.3.1, 2.2.1, 2.1.2, 2.0.3, 1.15.4
All affected versions: 0.12.0, 0.12.1, 1.0.0, 1.0.1, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.9.0, 1.10.0, 1.10.1, 1.11.0, 1.12.0, 1.12.2, 1.12.3, 1.13.1, 1.13.2, 1.14.0, 1.15.0, 1.15.2, 1.15.3, 2.0.0, 2.0.1, 2.0.2, 2.1.0, 2.1.1, 2.2.0, 2.3.0
All unaffected versions: 1.15.4, 1.15.5, 2.0.3, 2.0.4, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0, 2.10.1, 2.11.0, 2.11.1, 2.12.0, 2.12.1, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1, 2.16.1, 2.16.2, 2.17.0, 2.17.1, 2.18.0